Robot Task Planning in Deterministic and Probabilistic Conditions Using Semantic Knowledge Base
نویسندگان
چکیده
A new method is proposed to increase the reliability of generating symbolic plans by extending the Semantic-Knowledge Based (SKB) plan generation to take into account the amount of information and uncertainty related to existing objects, their types and properties, as well as their relationships with each other. This approach constructs plans by depending on probabilistic values which are derived from learning statistical relational models such as Markov Logic Networks (MLN). An MLN module is established for probabilistic learning and inference together with semantic information to provide a basis for plausible learning and reasoning services in support of robot task-planning. The MLN module is constructed by using an algorithm to transform the knowledge stored in SKB to types, predicates and formulas which represent the main building block for this module. Following this, the semantic domain knowledge is used to derive implicit expectations of world states and the effects of the action which is nominated for insertion into the task plan. The expectations are matched with MLN output.
منابع مشابه
Automation in Handling Uncertainty in Semantic-knowledge based Robotic Task-planning by Using Markov Logic Networks
Generating plans in real world environments by mobile robot planner is a challenging task due to the uncertainty and environment dynamics. Therefore, task-planning should take in its consideration these issues when generating plans. Semantic knowledge field has been planned as a source of information for deriving implicit information and generating semantic procedure. This paper extend the Sema...
متن کاملSoftware tools for the cognitive development of autonomous robots
Knowledge representation and reasoning 4 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Probabilistic formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Planning 6 Motion planning . . . . . . ...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملSoccer Goalkeeper Task Modeling and Analysis by Petri Nets
In a robotic soccer team, goalkeeper is an important challenging role, which has different characteristics from the other teammates. This paper proposes a new learning-based behavior model for a soccer goalkeeper robot by using Petri nets. The model focuses on modeling and analyzing, both qualitatively and quantitatively, for the goalkeeper role so that we have a model-based knowledge of the ta...
متن کاملRobot task planning using semantic maps
Task planning for mobile robots usually relies solely on spatial information and on shallow domain knowledge, like labels attached to objects and places. Although spatial information is necessary for performing basic robot operations (navigation and localization), the use of deeper domain knowledge is pivotal to endow a robot with higher degrees of autonomy and intelligence. In this paper, we f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJKSS
دوره 7 شماره
صفحات -
تاریخ انتشار 2016